厂商 :深圳葵芳信息服务有限公司
广东 深圳- 主营产品:
- 服务器租用
如今,任何大数据平台的搭建和维护都需要成建制的数据工程师和数据科学家。过去两年间每年有数十个大数据平台在启动和搭建,这就在短时间内形成了对数据工程师和数据科学家的巨大需求,而在大数据人才的供应特别是高端人才供应方面则受到人才保有量不足和人才培养周期长的制约。如果我们从大学入学开始计算,加上软件开发和数据算法建模等方面工作经验的形成,培养一个合格的数据工程师和数据科学家至少需要五到十年的时间。
当前一个明显的事实是,大数据人才培养速度明显低于大数据发展和应用的速度。据调查,尽管全国50%的大数据人才集中在北京,但是北京的互联网公司仍然普遍遇到了合格的大数据人才“招聘难”和“留人难”的问题。?
先下手为强
大数据产业兴起于美国。美国现在正遭遇的“大数据人才荒”及其采取的应对措施,可以给我们诸多启发和借鉴。
例如,大数据人才在领英(LinkedIn)和玻璃门(Glassdoor)等人力资源和招聘网站,长期处于供不应求的状态。麦肯锡咨询研究指出,到2018年仅仅在美国,大数据人才短缺就到达50%-60%。今日美国和彭博社等媒体一致认为,大数据人才短缺的问题短期内只会加剧而不会缓解。同时,美国教育系统正根据市场需求做出调整,很多大学纷纷设置大数据研究院和相关专业。北卡公立大学早在2007年就先知先觉地设立了数据分析硕士项目,2016年该项目毕业生的就业率达到了100%,而且平均年薪达到了10万美元左右。该项目从2007年到现在的毕业生人数已经达到了100多人。然而,同美国教育界全力开动起来培养的人才数量和大数据快速发展所需要的人才数量相比,仍然是杯水车薪。
可以预见,在未来世界,国家之间、区域之间甚至是公司之间的大数据人才的争夺战,将是愈演愈烈的。有鉴于此,建立中国的大数据人才平台,对大数据人才问题进行超前研究,并且未雨绸缪,加大人才培养和引进的力度,应该引起领导者与人才规划部门更多的重视。
去年,大数据市场完全围绕Hadoop生态系统周围的技术。从那时起,重心一直是通过已证明增加收入、提高生产力和降低风险而带来投资回报的使用场合,“将大数据切实利用起来”。现在,大数据继续高奏凯歌。明年我们预计会看到更主流的公司采用大数据和物联网,大中型企业保守和怀疑的企业组织会开始一头扎入其中。
与几年前我们刚开始接触Hadoop时相比,数据融合会来得更重要。通过高级分析平台,结合社交数据、移动应用程序、客户关系管理(CRM)记录和购买历史记录,这让营销人员得以通过发现当前和未来购买行为方面的隐藏模式和宝贵信息,从而洞察未来。
自助式数据分析的普及,加上云计算和Hadoop的广泛采用,正在整个行业带来变化,许多公司会抓住这一形势,或者无视变化、因此面临险境。实际上,工具仍在出现,而Hadoop平台承诺的还没有达到公司缺少不了它的地步。
下面是明年将塑造大数据行业的五大趋势:
物联网(IoT)
公司日益期望从所有数据中获得价值;制造、销售和支持实物的大型工业公司将与其“物件”连接的传感器接入到互联网。企业组织将不得不改动技术,以便与物联网数据衔接起来。这在数据治理、标准、健康保障、安全和供应链等方面带来了无数新的挑战和机遇。
物联网和大数据是同一枚硬币的两面;数十亿与互联网连接的“物件”将生产大量数据。然而,这本身不会引发另一场工业革命,不会改变日常的数字化生活,也不会提供拯救地球的预警系统。来自设备外部的数据才是企业让自己与众不同的方面。结合上下文来捕获和分析这种类型的数据为公司带来了新的发展前途。
研究表明,相比计划维修,预测性维护最多可省下12%的成本,因而使维护成本降低30%,将设备故障造成的停运时间缩短70%。对于制造工厂或运输公司来说,从数据驱动的决策获得这些结果,意味着在改进运营和节省成本方面大有机会。
深度学习
深度学习是一套基于神经网络的机器学习技术,它仍在发展之中,不过在解决业务问题方面显示出大有潜力。它让计算机能够从大量非结构化数据和二进制数据中找出感兴趣的内容,并且推导出关系,而不需要特定的模型或编程指令。
这些算法的源动力主要来自人工智能领域,人工智能的总体目标是模拟人类大脑观察、分析、学习和做决定的能力,尤其是处理极其复杂的问题。深度学习方法的一个关键概念就是数据的分布式表示,因而可以对输入数据的抽象特征实现大量的组合,从而可以紧凑表示每个样本,最终获得更丰富的泛化。
秉承 "用户至上 用心服务"的服务宗旨,以满足客户多元化需求为己任,不断进取。
网站:www.chinahkidc.net
电话:189-0638-5826 QQ:2851041347
香港服务器托管与租用,香港葵芳机房!自建机房,资源充足,服务及时,全年在线!