厂商 :诸城市博顺环保科技有限公司
山东 潍坊- 主营产品:
- 真空过滤机
- 生活污水处理设备
- 污泥脱水设备
供应加压气浮机设备,溶气加压气浮机设备,平流式溶气气浮机
气浮设备主要组成系统:主要由溶气和设备(也称压力溶气系统)、空气释放设备(也称溶气释放系统)和气浮池(也称气浮分离系统)等组成。目前,溶气气浮工艺的设计和最佳操作的确定,需要依靠中试和经验。以下,根据各种应用中总结出的经验,分别介绍各个组成部分的设计原理。
1、 压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备)
2、溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12%,因此优化溶气系统的设计对缩小气浮操作费用是很重要的。
溶气罐多为园筒形,立式布置,容积按废水停留时间25~3min计算,罐中可装设有隔板,瓷环之类,也有用空罐的。
因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流泵和空压机的参数。
在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高。这样就使得溶气罐的体积显得庞大,停留时间有时长达3~5min。国内的研究证实了液膜阻力控制着溶气速率,认为停留时间越长,溶气效果越好的观念是不符合实际,因此国内设计参数不同于国外,是以预定的溶气效率为设计指标,以液相过流密度和液相总所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。
3、 加压溶气法有两种进气方式,即泵前进气和泵后进气。
第一种是泵前进气,当空气吸入量小于空气在该温度下水中的饱和度时,由水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐。这种方式省去了空压机,气水混合效果好,但水泵必须采用自引方式进水,而且要保持lm以上的水头,其最大吸气量不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会产生气蚀现象。
第二种是泵后进气。当空气吸入量大于空气在该温度下水中的饱和度时,空气通过空压机在水泵的出水管压入,但也不宜大于水泵吸水量的25% 。这种方法使水泵工作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气。为了保证良好的溶气效果,溶气罐的容积也比较大,一般需采用较复杂的填充式溶气罐。
气浮分离系统的功能是确保一定容积来完成微气泡群与水中杂质的充分混合、接触、粘附以及带气絮粒与清水的分离。
1、为了提高气浮的处理效果,往往向废水中加入混凝剂或气浮剂,投加量因水质不同而异,一般由试验确定。对于铝类絮凝剂,通过提高搅拌强度均可使出水浊度进一步降低。 为保证浮选(混凝)剂的混凝作用,浮选池进水端宜设静态管道混合器和反应室,反应室有效容积约按废水(进水量与回流量的和)停留时间10分钟计算,一般分为三间,迷宫式布置,且每间设搅拌机提高混凝效果,每间中的速度梯度常常是相同的。絮凝池(也即反应室)设计最好提供活塞流状态(紊流堆动状态),可以确保较好的气浮效果。
2、 溶气气浮池的最大建议尺寸可达145m2,相应的产水能力为2900~4350m3/ h,单位面积的产水能力至少提高了一倍。溶气气浮池的深度从1.5m增加到5.0m,且池型由长方形向正方形发展,长宽比在(1.2~2):1之间。目前运行良好的溶气气浮池的长度最大可达12m,但宽度被限制为8.5m,这主要是因为机械刮渣机的最大跨度为8.5m。
污水在气浮池内的停留时间一般取30~40min,工作水深为15~25m,长宽比不小于4,表面负荷5~10m3/m2?h。
若停留时间太短,水流的冲击力大,浮选罐中的污水牌较强的紊流状态,这样不但不利于气泡与絮体的粘附,反而会将部分已粘附在气泡上的絮体打碎;另外,由于紊流和较短的反应时间,而使投加的部分混凝剂未反应完全时就随出水流出,致使出水中悬浮固体的去除率降低,甚至出现负增长的趋势。
3、 气浮池分2个区:接触区和分离区。
设计接触区时,要注意控制絮凝水的上升流速,避免短流、偏流,不致在上浮过程中被水流剪脱已粘附的气泡而影响后续分离效果。通常情况下接触区的上升流速以控制在10~20mm/s为宜,高度以1.5~2.0m为宜,在这种流速和高度下,既保证了絮粒和微气泡的接触时间,又不会造成絮粒因上浮时间过长而破坏或下沉。
合理地布置释放器,使释放水的作用范围遍及全区,能充分、及时地使微气泡下絮粒接触。
分离区选择分离速度时,应有利于带气絮粒上浮。对于絮粒大、密度小、不易破碎的带气絮粒一般采取较大的分离速度,反之取较小值。分离区的流速宜在1~3mm/s,流速过小会造成大絮粒因拥挤而沉淀,流速过大会造成带气絮粒和清水的分界面向下延伸,从而造成絮粒随水流出、水质下降。