厂商 :东莞市远景电源科技有限公司
广东 东莞- 主营产品:
隔离变压器加装在稳压电源的应用
一、在电源输入端接入隔离变压器(三角/星形)
1、若电网三次谐波和干扰信号比较严重,采用△/Yo隔离变压器,可以去掉三次谐波和减少干扰信号.
2、可以采用△/Yo隔离变压器产生新的中性线,使设备与电网中性线无关,避免由于电网中性线不良造成设备运行不正常3、非线性负载引起的电流波形畸变(如三次谐波)可被隔离而不污染电网.
二、在电源输出端接入隔离变压器(星形/三角)
1、防止非线性负载的电流畸变,影响到稳压电源的正常工作及反回到电网,起到净化电网的作用.
2、非线性负载电流的畸变影响取样的准确性,可以在Yo/△隔离变压器输入端采样,得到能反应实际情况的控制信号,使稳压电源控制正常.
3、若负载不平衡,采用Yo/△也不影响稳压电源的正常工作.(低损耗型三相干式安全隔离变压器(H级180℃绝缘等级), 变压器是各种电源及电气设备的主要部件,隔离变压器由圆筒式绕组和迭片式铁芯组成,铁芯采用 全新高硅硅钢片叠装,全斜接缝.本公司采用先进的制作工艺,有进口绕线机和全套真空压力浸漆设备;绕组采用脱胎整列绕制方法;对变压器进行真空浸漆,使变压器的绝缘等级达到F级或H级.变压器的输出和输入电压可按客户需求设计.有单相、三相或多路输入和输出等多种规格.
线路太长电压不够怎么办有什么解决办法
隧道电压太低(350v,340v,330v甚至更低),电流不够,设备无法工作,影响施工进展由于隧道施I中洞外空压机通风机及洞外碎石场等不停运转,供电线路铺设太长,洞外变压器所供电压产生压降,供电损耗太大,末端电压已达不到用电设备额定电压,导致洞内大型用电设备离心泵、输送泵由于电压低不能正常工作,为解决施I用电问题,供电末端电压太低的问题经常困扰隧道施I单位.
针对行业中存在的这些困扰,远景设备制造有限公司以全心全意为用户解决电源使用中存在的一一电压波动、浪涌、谐波干扰等诸多电源质量问题的宗旨,根据用户的实际需要,门']研制出一种能为用户解决这个问题的'TOSG隧道专用调压变压器';.
该产品除符合一般通用变压器的所有技术指标外,还能输出多档适合隧道施I的供电电压,包括在洞内施工移动照明所需的36V电压,并可根据用户需要作特规电压设计.使用'KSG隧道专用调压变压器'产品,就能解决隧道施工中长距离送电,末端电压太低的问题.该产品已被中铁集团隧道工程项目中广泛应用.
KSG隧道矿井专用三相远距离油浸式升压器变压器是专门针对隧道矿井等因输送电源线路长,线径小造成的设备端机电设备电源负载电压太低,机电设备难启动,从而使设备无法正常工作,减少设备使用寿命甚至烧毁设备等一系列严重问题而研发的一款新型升压器变压器.
变压器短路故障原因
因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键.从近几年解剖变压器,对其事故进行分析来看,与电磁线有关的大致有以下几个原因.
1、基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大.
2、目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因.
3、抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响.按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降10%以上,延伸率则下降40%以上.而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,热点温度可达118℃.一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受短路电流冲击后,绕组温度急剧升高,据GBl094的规定,允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多.
4、采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象.采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形.如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形.另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象.
5、采用软导线,也是造成变压器抗短路能力差的主要原因之一.由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线.
6、绕组绕制较松,换位或纠位爬坡处处理不当,过于单薄,造成电磁线悬空.从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处.
7、绕组线匝或导线之间未固化处理,抗短路能力差.早期经浸漆处理的绕组无一损坏.
8、绕组的预紧力控制不当造成普通换位导线的导线相互错位.